Astronomija

Je naše vesolje singularnost?

Je naše vesolje singularnost?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

V skladu s teorijo velikega poka je bilo naše vesolje veliko manjši po velikosti.

V resnici je bil tako majhen, da je bil na začetku nekoč singularnost.

In vesolje se je začelo širiti in se od takrat naprej širi.

Toda vse to že veste.

Sprašujem se torej, če je bilo vesolje nekoč "singularnost", če je bilo nekoč neskončno majhno ali celo zelo majhna, je to sploh smiselno?

Mislim, če v nekem trenutku vse kar je bilo je bil to singularnost, torej ne bi to singularnosti neomejene velikosti in torej navsezadnje ne bi bila "singularnost"?

Če prostor ne obstaja neodvisno od vsega, kar je, potem če je vse tisto, kar je bilo, tista singularnost, ali ni res, da ta singularnost ne bi obstajala kot drobna pika, ki lebdi v velikem praznem prostoru, ampak da bi jo zajemala in vesolje sam in torej sam po sebi neskončen?

V enostavnejši analogiji mislim, da če je vse samo eno zrno peska, ali tega zrna peska ne bi bilo povsod? Zgoraj, navzdol, levo in desno, kamor koli bi pogledali, bi obstajala samo ena stvar, eno samo zrno peska in če bi da je zrno peska obstajalo povsod, saj bi bilo to edino, kar je obstajalo, ne bi njegova velikost je potem neskončna, brez konca? Brez konca svoje velikosti? Ker da bi bila velikost nečesa končna, specifična in merljiva, bi se morala končati tam, kjer se začne nekaj drugega, toda če je vse to nekaj, ali potem ideja o tem nečem, ki ima velikost, ni naivna in nesmiselna?

In če bi bil nekdo ujet znotraj te singularnosti, ne bi ta singularnost od znotraj izgledala in bila neskončna za osebo v njej, podobno kot izgleda naše vesolje in je neskončna za nas, ki obstajamo znotraj njega?

Razumem, da se pogoji med tako imenovano "začetno singularnostjo" zelo razlikujejo od tistih, ki jih imamo zdaj, in da resnično govorimo o 2 popolnoma različnih stanjih vesolja v času, zato ne zanikam tega dejstva ali tiste "začetne" država.

Bistvo, ki ga poskušam poudariti, je predvsem koncept velikost glede vesolja.

Zanima me, kako prepoznavno ali ne je naše sedanje vesolje od tako imenovane "singularnosti". Ali ne bi bilo naše trenutno stanje vesolja videti podobno "začetni singularnosti" prihodnjemu opazovalcu 13,8 milijarde let od danes?

Nisem prepričan, ali ta objava spada sem ali na https://physics.stackexchange.com/ ali je popolna neumnost. Če je, jo lahko zaprete.


Singularnost ni objekt. Je lastnost diferencialne enačbe. Na primer:

$$ t frac {dx} {dt} + 2x = 0 $$

To je mogoče "rešiti" $ x = frac {C} {t ^ 2} $, in dobi vrednost $ t $ in ustrezna vrednost $ x $ lahko najdemo konstanto integracije razen $ t = 0 $.

Če dobite to enačbo in vrednost x v času t = 0, ne morete dobiti rešitve. Zdaj so enačbe gravitacije vesolja podobne, le da imajo štiri dimenzije in je rešitev veliko težja. Imajo tudi singularnost in ta singularnost je v času = 0.

Torej ne morete reči "vesolje je bilo singularnost". Lahko pa rečete: "Na začetku vesolja je obstajala posebnost.

S svojimi modeli ne moremo opisovati stanja vesolja v času nič. Ni gotovo, kako bi si bilo treba razlagati to singularnost: lahko predstavlja nekakšno fizično resničnost ali pa pomanjkljivost našega modela zgodnjega vesolja. Včasih se singularnosti pojavijo v rešitvah, ki niso fizično resnične: rešitve enačbe črne luknje imajo v krogli, ki se imenuje horizont dogodkov, posebnost. Če pa spremenite svojo perspektivo iz opazovalca v mirovanju v opazovalca v prostem padcu, ugotovite, da singularnost izgine (vendar je v središču črne luknje še vedno singularnost)

Veliko vaših vprašanj je torej nesmiselnih ali vsaj neodgovorljivih: ne morete biti "ujeti v singularnost". Vesolje nikoli ni bilo singularnost kadar koli t> 0. Zagotovo bo vesolje čez 13,8 milijarde let precej podobno kot je zdaj kot pred 13,8 milijardami let.

Vprašanje "velikosti" je zanimivo, a trenutno neodgovorljivo: če je vesolje "odprto" (kot se zdi), potem je lahko vesolje neskončno v dimenzijah in je vedno (za t> 0) že bilo. Neskončne univerze ustvarjajo filozofske probleme, toda tudi vesolja z "robom". In ni znanstvenega preizkusa poti, če je vesolje neskončno.


Začetek našega vesolja: singularnost, marsikje ali povsod?

V zadnjem času poslušam / berem popularizirano klepetanje znanosti, ki kaže, da je imelo naše vesolje več izvornih točk, ne le izvirne singularnosti velikega poka.

Pred pol stoletja, ko sem se seznanil s kozmologijo, so ugotovitve / mnenja Hubbla in Lemaitreja pokazale, da je naše vesolje nastalo na enem samem mestu. Poleg tega, ko se je vesolje širilo in razmišljalo z analogijo z baloni, ni bilo več tako, da bi bilo točko, iz katere izvira vesolje (Veliki pok), mogoče najti kjer koli v vesolju, ampak da ta točka se je v matematičnem in morda tudi fizičnem smislu razširila po vsem vesolju.

Zdaj slišim, kot sem rekel, sliši klepetanje, da je naše vesolje nastalo na številnih mestih ali morda na vseh delih vesolja, ne pa na katerem koli mestu (tip Big Bang).

Vprašanje št. 1: Ali pravilno slišim / berem, da ljudje trdijo, da je naše vesolje izviralo iz številnih točk našega vesolja?

Vprašanje št. 2: Če je odgovor na prvo vprašanje pritrdilen, kako se to razlikuje od trditve, da je spot Big Bang matematično / fizično razširjen po vsem celotnem vesolju?

Vprašanje št. 3: In končno, če ljudje trdijo, da je naše vesolje izviralo iz vseh / vseh krajev našega vesolja, kako se to razlikuje od teorije stabilnega stanja?

# 2 Jeff B1

Vseeno mi je, kaj si mislijo, še vedno sem stalnica.

# 3 Otto Piechowski

Jeff, živim v Kentuckyju, kjer ga vsi pogosto uporabljamo. In čutim dolžnost, da vas v naši bralni publiki obvestim, da je pravilno napisano y'all y'all. Otto

Jeff, živim v Kentuckyju, kjer vas pogosto uporabljajo. In čutim dolžnost, da vas v naši bralni javnosti obvestim, da je pravilno napisano y'all y'all. Otto

Uredil Otto Piechowski, 26. novembra 2018 - 13:16.

# 4 llanitedave

Vseeno mi je, kaj si mislijo, še vedno sem stalnica.

Florida Man je opisan na več načinov. "Steady" je redko eden izmed njih.

# 5 llanitedave

V zadnjem času poslušam / berem popularizirano klepetanje znanosti, ki kaže, da je imelo naše vesolje več izvornih točk, ne le izvirne singularnosti velikega poka.

Pred pol stoletja, ko sem se seznanil s kozmologijo, so ugotovitve / mnenja Hubbla in Lemaitreja pokazale, da je naše vesolje nastalo na enem samem mestu. Poleg tega, ko se je vesolje širilo in razmišljalo z analogijo z baloni, ni bilo več tako, da bi bilo točko, iz katere izvira vesolje (Veliki pok), mogoče najti kjer koli v vesolju, ampak da ta točka se je v matematičnem in morda tudi fizičnem smislu razširila po vsem vesolju.

Zdaj slišim, kot sem rekel, sliši klepetanje, da je naše vesolje nastalo na številnih mestih ali morda na vseh delih vesolja, ne pa na katerem koli mestu (tip Big Bang).

Vprašanje št. 1: Ali pravilno slišim / berem, da ljudje trdijo, da je naše vesolje izviralo iz številnih točk našega vesolja?

Vprašanje št. 2: Če je odgovor na prvo vprašanje pritrdilen, kako se to razlikuje od trditve, da je spot velikega poka matematično / fizično razširjen po vsem celotnem vesolju?

Vprašanje št. 3: In končno, če ljudje trdijo, da je naše vesolje izviralo iz vseh / vseh krajev našega vesolja, kako se to razlikuje od teorije stabilnega stanja?

Hvala vam.

Otto

Ne vidim razlike med št. 1 in št. 2. Vsaka točka v vesolju je zajeta v vesolju in je bila vedno.

Teorija stabilnega stanja predpostavlja, da snov še vedno nastaja neprekinjeno, zato bi morala gostota snovi vesolja ostati enaka, ko se širi. Torej je razlika med teorijama velikega poka in stabilnega stanja v tem, da je imelo vesolje velikega poka točno določeno izhodišče in se od tega nastanka spreminja in razvija, kjer ravnotežno stanje trdi, da se je vedno širilo, raslo in ustvarjalo. enako stanje, kot ga vidimo zdaj.

# 6 llanitedave

Jeff, živim v Kentuckyju, kjer vas pogosto uporabljajo. In čutim dolžnost, da vas v naši bralni javnosti obvestim, da je pravilno napisano y'all y'all. Otto

Kentucky y'all se razlikuje od floridskega jahanja. Ali govoriš z južnim dr'allom?

Primernost je vedno tako zabavna!

# 7 Jeff B1

Ne vidim razlike med št. 1 in št. 2. Vsaka točka v vesolju je zajeta v vesolju in je bila vedno.

Teorija stabilnega stanja predpostavlja, da snov še vedno nastaja neprekinjeno, zato bi morala gostota snovi vesolja ostati enaka, ko se širi. Torej je razlika med teorijama velikega poka in stabilnega stanja v tem, da je imelo vesolje velikega poka točno določeno izhodišče in se od tega nastanka spreminja in razvija, kjer ravnotežno stanje trdi, da se je vedno širilo, raslo in ustvarjalo. enako stanje, kot ga vidimo zdaj.

Ne tako. Če domnevate, da Vesolje utripa od manjšega do bolj hudega, se snov preprosto spremeni v energijo, ki se širi, in se vrne k materi, ki počne drugo stvar. Hudiča, tako počasno je, da je ne bomo nikoli opazili.

Yawl na Floridi ste vsi z naglasom v New Yorku, kot pri psu za pse. Razumej, yawl:.

Uredil Jeff B1, 26. novembra 2018 - 13:47.

# 8 nicoledoula

Vse. prišel iz nič. in se nato razširil v neskončnost. Zdi se popolnoma zakonito. Če ne vemo, kje smo in od kod prihajamo, je prišlo do nekega izjemno kreativnega teoretiziranja. Mislim, da bi se morali raje natakniti na tiste nadležne ravne ozemljitelje, ki verjamejo in še huje rečejo v javnosti, da smo v zaprtem okolju z zvezdami in planeti itd., Ki so veliko manjši in bližje, kot so nam rekli. Če se jih bomo lahko znebili in vsi drugi vprašalniki znanosti, naše sedanje teorije ne bodo postavljene pod vprašaj. Ker vsi vemo, kako pomembno je, da vsi verjamemo v isto (?) Znanost (danes) dokazuje, da ne potrebuje dokazov / dokazov, očitno obupno potrebuje soglasje veliko več kot to. Slepa vera in zaupanje v avtoriteto sta nas pripeljala sem do tega kraja. Vsekakor sem v veliko zadovoljstvo govoril o množici pogovorov, ki ne in ne pojasnjujejo človekovih večnih vprašanj. Kaj nameravate početi s tistimi, ki dvomijo / ne verjamejo, kaj bi morali?

# 9 Astroman007

Vseeno mi je, kaj si mislijo, še vedno sem stalnica.

No, tudi mene ne zanima, kaj mislite ostali, ampak jaz sem večnik, kot sem že povedal na tem forumu. In ker še nikoli nisem slišal za tak sistem, sem morda edini, ki vidi vesolje na tak način.

# 10 sg6

Vprašanje št. 1: Ali pravilno slišim / berem, da ljudje trdijo, da je naše vesolje izviralo iz številnih točk našega vesolja?

Vprašanje št. 2: Če je odgovor na prvo vprašanje pritrdilen, kako se to razlikuje od trditve, da je spot velikega poka matematično / fizično razširjen po vsem celotnem vesolju?

Vprašanje št. 3: In končno, če ljudje trdijo, da je naše vesolje izviralo iz vseh / vseh krajev našega vesolja, kako se to razlikuje od teorije stabilnega stanja?

1: Ker se je takrat začelo iz nič, so bile v tistem trenutku vse točke naključne. Težava je v tem, da je bilo vse samo ena točka, zato ideja o treh dimenzijah nekako odpove. Toliko / vseh / enega je enakih.

2: Spet razmišljate, da je bilo eno mesto / kraj izvor velikega poka, nenavadno je, da so bili vsi kraji izvor. Ko navijate čas nazaj, so bila vsa mesta prvotno eno mesto.

3: Stacionarno stanje se zdi preveč vidikov, ki zdaj ne bi bili več pravilni. In preveč dokazov za BB.

Prav tako pravite s številnih mest v našem vesolju, kar pomeni, da je bilo vesolje tu pred BB, medtem ko je bilo BB začetek vesolja.

# 11 DaveC2042

V zadnjem času poslušam / berem popularizirano klepetanje znanosti, ki kaže, da je imelo naše vesolje več izvornih točk, ne le izvirne singularnosti velikega poka.

Pred pol stoletja, ko sem se seznanil s kozmologijo, so ugotovitve / mnenja Hubbla in Lemaitreja pokazale, da je naše vesolje nastalo na enem samem mestu. Poleg tega, ko se je vesolje širilo in razmišljalo v smislu analogije z baloni, ni bilo več tako, da bi bilo točko, iz katere izvira vesolje (Veliki pok), mogoče najti kjer koli v vesolju, ampak da ta točka se je v matematičnem in morda tudi fizičnem smislu razširila po vsem vesolju.

Zdaj slišim, kot sem rekel, sliši klepetanje, da je naše vesolje izviralo iz mnogih krajev ali morda iz vseh delov vesolja, ne pa iz katerega koli mesta (tipa Big Bang).

Vprašanje št. 1: Ali pravilno slišim / berem, da ljudje trdijo, da je naše vesolje izviralo iz številnih točk našega vesolja?

Vprašanje št. 2: Če je odgovor na prvo vprašanje pritrdilen, kako se to razlikuje od trditve, da je spot velikega poka matematično / fizično razširjen po vsem celotnem vesolju?

Vprašanje št. 3: In končno, če ljudje trdijo, da je naše vesolje izviralo iz vseh / vseh krajev našega vesolja, kako se to razlikuje od teorije stabilnega stanja?

Hvala vam.

Otto

Ko kozmologi govorijo o Velikem poku, kaj pomenijo fizično je, da se je vesolje začelo zelo majhna in vroča.

Ko govorijo o singularnosti, mislijo to matematično njihovi model Velikega poka se začne z ene same točke, ki je neskončno majhna in vroča. To preprosto pomeni, da se naša pravila takrat "raznesejo", kar odraža dejstvo, da v resnici ne razumemo, kako fizika deluje mimo določene točke. Na splošno velja, da ko bomo razvili delujočo kvantno teorijo gravitacije, bomo lahko razvili matematični model Velikega poka, ki nima singularnosti. Mogoče bo imela ta teorija več izvornih točk (v zelo majhnem prostoru) - kdo ve?

V teh dneh se praviloma ustali, da je stabilna država mrtva raca. Obstaja več stvari, ki jih Big Bang zelo dobro razloži, Steady State pa ne. Pravi "žebelj v krsti" je bilo kozmično mikrovalovno ozadje. To povsem naravno izhaja iz Velikega poka, vendar ga v stanju dinamičnega ravnovesja ni mogoče smiselno pojasniti. Seveda, če je znanost to, kar je, še vedno obstaja nekaj spodbud, ki poskušajo pripraviti stabilno državo na delo, med katerimi so nekateri spoštovani fiziki. Je pa strašno dolg strel.


Po teoriji velikega poka je naše vesolje začelo kot singularnost. V čem je obstajala singularnost, če pred velikim pokom ni obstajalo nič?

To je vprašanje, ki je še vedno zunaj našega znanja in bo morda vedno še naprej. Današnja fizika lahko dobro opiše dogodke, ki so se zgodili po eksploziji te singularnosti (začne se pri približno # 10 ^ (- 43) # sekundah po). Obstoječi zakoni fizike omogočajo vpogled v način medsebojnega vplivanja snovi in ​​energije od tistega trenutka pa vse do danes, toda vprašanje, kaj je obstajalo pred velikim pokom, je nekaj, o čemer lahko samo ugibamo (in tega morda nikoli ne bomo zagotovo vedeli).

Do singularnosti pride, ko imajo enačbe, v tem primeru splošne relativnosti (GR) pogoj, ko pride do delitve z ničlo. Kar zadeva GR, obstajajo posebnosti pri Velikem poku in v črnih luknjah. Ko se v enačbah fizike pojavi singularnost, to pomeni, da se enačbe pokvarijo in ne morejo opisati dogodka, kakršnega so.

Splošna relativnost dobro opisuje vesolje, razen v ekstremnih razmerah, kot je Veliki pok. V takšnih pogojih bi prevladovali kvantni učinki in trenutno Splošna relativnost in kvantna mehanika nista poenoteni. Za opis Velikega poka potrebujemo nove teorije.

Prav tako nima smisla reči "pred" velikim pokom. Ves čas in prostor je bil ustvarjen ob Velikem poku, zato ga prej ni bilo.


Kako Singularnost ustvarja vso raznoliko snov v vesolju?

Kako Singularnost ustvarja vse raznolike snovi in ​​lastnosti, ki jih danes opazujemo v vesolju?

Čeprav so teorije, kot je kvantna gravitacija, nekoliko nakazovale na obstoj delcev gravitacije in omogočajo, da neka oblika gravitacije deluje v skladu z zakoni kvantne fizike, in vem, da je treba veliko več dela opraviti, ko gre za iskanje bolj osnovna resničnost ali pojavi (morda v planckovi lestvici ali mimo nje), ki združuje vse osnovne temeljne sile in njihove osnovne delce (in nekoliko gravitonski delci, ki po Ligu morda res obstajajo),
[Osebno mislim, da so informacije verjetno kandidat za združevanje osnovnih delcev v skladu z raziskavo o Maxwellovem demonu in medsebojnem razmerju med prostorom-časom in informacijami ter entropijo po raziskavah Rolfa Landauerja, Charlesa Bennetha in Lea Szilarda.
ali delo Johna Polkinghorneja o aktivnih informacijah, čeprav so ti posebni zaključki o teh študijah v zvezi s singularnostjo in kvantno težo samo moja zasebna hipoteza in zasebna osebna nagnjenja, saj o tem ni veliko podatkov]

ampak v skladu s tem, skozi naše trenutne teorije kozmološkega velikega poka in singularnosti in začetka prostora-časa, kako se premakniti od singularnosti (in kakšne so fizične lastnosti singularnosti ali delci, iz katerih je sestavljena sama singularnost, ali kaj stvari ali lastnosti, ki jih ima) do ekspanzije, ki jo vidimo, ki skozi kozmološke konstante proizvaja in meša osnovne delce, ki vplivajo na medsebojno interakcijo, da tvorijo vodik, in tiste prevladujoče molekule vodika, ki skupaj z energijo proizvajajo bolj zapletene kemijske molekule snovi in ​​težje elemente v interakciji s temeljnimi silami (šibke, močne jedrske in elektromagnetne sile) in delci (kot so fotoni, elektroni itd.) ustvarjajo bolj raznolike lastnosti in pojave, ki sčasoma ustvarijo naše raznoliko vesolje (verjetno je bil to zelo preprost in neskladen povzetek z mojega konca in opravičujem se, če se mi zdi ta ideja in koncept popolnoma napačen glede razvoja materije in s procesom samoorganizacije).

Čeprav so se podobne razprave o tem vprašanju pojavile na številnih različnih področjih (kot so Evolution, Computer Science itd.) O pojavnosti / supervenienci proti redukcionizmu, zapletenosti vs preprostosti in pristopu gradnje modelov od spodaj navzgor in od zgoraj navzdol, kako se lotiti tega podobnega vprašanje v kozmologiji iz preproste singularnosti, ki se širi in ustvarja raznoliko fizično realnost z veliko molekulami in kemikalijami ter različnimi oblikami snovi, ki sodelujejo s prostorom-časom in ustvarjajo različna stanja snovi itd. Kaj je singularnost? In kaj povzroča, da se širi in proizvaja vse raznolike lastnosti in stanja snovi, ki jih vidimo?


Je naše vesolje singularnost? - astronomija

  • Če se vesolje širi, je moralo biti nekoč zgoščeno v eni sami točki z neskončno gostoto.

    Ta točka se imenuje kozmična singularnost.

  • Ta singularnost je podobna črni luknji, saj je bila vsa snov in energija zdrobljena na eni točki.

    To je ne kot eksplozija, pri kateri smeti odletijo v vesolje.

Namesto tega gre za širitev prostora samega, ki se je torej zgodil povsod hkrati.

poda grobo oceno časa od Velikega poka (tj. starosti Vesolja):

čas = razdalja / hitrost = r / v = 1 / H 0 = 13 Gy.

  • Druge ocene kažejo, da znaša le 8 Gy ali 16 Gy.

    V vsakem primeru mora biti to vsekakor precenjeno, ker je gravitacijski vlek mase Vesolja upočasnil širitev (tj. H 0 se je s časom zmanjšal).

    To je težava, ker zvezdna teorija kaže, da so najstarejše zvezde stare vsaj 14 Gy.

Glede natančne vrednosti Hubblove konstante je bilo torej veliko polemik.

  • Sferična površina na razdalji 13 Gly od nas se imenuje horizont kozmičnih delcev, opazno vesolje leži znotraj te površine.

36.2 Kozmično mikrovalovno ozadje

  • Poleg opažene širitve vesolja obstajajo še dodatni dokazi o velikem poku.

    Ker je bila vsa opazovana masa in energija v vesolju prvotno koncentrirana v zelo majhnem prostoru, mora biti gostota mase / energije zelo visoka, kar pomeni zelo visoko temperaturo, bolj vročo od notranjosti katere koli zvezde.

    Pri teh temperaturah je večina mase / energije obstajala v obliki visokoenergijskega gama sevanja. Ti fotoni so medsebojno vplivali in z drugimi delci, med trčenjem so pridobivali in izgubljali energijo, kar je povzročilo različne valovne dolžine s porazdelitvijo črnega telesa.

  • Ko se je vesolje razširilo, se je gostota mase / energije zmanjšala in temperatura padla. Spekter črnih teles je torej moral svoj vrh premakniti tudi na daljše valovne dolžine, kot opisuje Wienov zakon:
    Penzias in Wilson sta ga odkrila v laboratoriju Bell Labs v zgodnjih šestdesetih letih prejšnjega stoletja, ko sta delala na mikrovalovni anteni za prenos telefonskih klicev na komunikacijske satelite, in ugotovila hrup v ozadju z vršno valovno dolžino okoli 1 mm, ki ustreza T = 3 K.

    COBE je tudi ugotovil, da je ozadje skoraj popolnoma izotropno.

  • Vendar obstajajo rahle anizotropije. Prvič, sevanje je nekoliko & quottopli & quot (modro premikano) v smeri ozvezdja Leo in & quotcooler & quot (rdeče premaknjeno) proti Vodnarju. Naslednja slika je projekcija celotnega neba, z Mlečno cesto vodoravno čez sredino in Strelca v sredini. (Opomba: barve so pravzaprav obratno od pričakovanega, da je Leo v rdeči regiji zgoraj desno in Vodnar v modri regiji spodaj levo.)

  • Ta gladka sprememba v sevanju ozadja je posledica gibanja Zemlja glede na ozadje.

V smeri, kamor potujemo a blueshift (enako kot če bi mirovali in se premaknilo proti nam).

    Analiza podatkov kaže, da se gibamo s hitrostjo 390 km / s proti Levu.

  • Če upoštevamo naše gibanje okoli galaksije (vodoravno v desno), to pomeni, da se mora celotna galaksija gibati s hitrostjo 600 km / s v smeri proti Kentavru, nekoliko bližje središču te figure (v zeleni ).

  • Ko se upošteva gibanje Zemlje, še vedno najdemo preostala nihanja sevanja v ozadju, čeprav znašajo največ 100 & mikro K topleje ali hladneje od povprečja:

  • Verjetno je, da so te razlike posledica koncentracij mase v zgodnjem vesolju, ki je preprečilo popolno izotropijo sevanja ozadja z gravitacijskim rdečim premikom (območja z večjo gostoto so tukaj videti modro).

36.3 Prvih nekaj trenutkov

  • Nihče ne ve, kaj je povzročilo Veliki pok na začetku, toda ko se je zgodil, vemo, da je vesolje doživelo številne spremembe, ko se je širilo in njegova temperatura padala. Zlasti prvih nekaj trenutkov je povzročilo hiter razvoj dogodkov.

    V začetnem kratkem časovnem obdobju, imenovanem Planckov čas = 10 -43 s, sta bili masa in energija tako koncentrirani, da našega trenutnega znanja o fiziki (podobno kot v neposredni bližini singularnosti črne luknje) ni bilo mogoče opisati prostora in časa.

    Vse naravne sile so bile enotne, brez razlike med vplivom na delce. To se precej razlikuje od sedanjega primera, kjer je na primer električna odbojnost med parom elektronov 10 42-krat večja od njihove gravitacijske privlačnosti.

    Po Planckovem času se je temperatura znižala na 10 32 K, kar je gravitaciji omogočilo, da se je ločila od drugih naravnih sil in postala njegova ločena, šibkejša interakcija.

  • Čeprav so se preostale sile nadaljevale v enotnem stanju, je to visokoenergijsko stanje fizikom znano iz njihovih študij subatomskega sveta s pospeševalniki delcev.

36.4 Ustvarjanje snovi

  • Večina mase Vesolja je bila ustvarjena v prvi sekundi njegovega obstoja s postopkom, imenovanim parna proizvodnja. Pri teh visokih energijah lahko pari fotonov trčijo in tvorijo pare delcev / prostih delcev, kot so elektroni in pozitroni:

  • Nastajanje parov lahko povzroči veliko različnih vrst delcev, vendar le, če imajo fotoni vsaj toliko energije kot skupna masa delcev. Ker se je temperatura vesolja zniževala in so fotoni imeli manj energije, je lahko nastajalo vedno manj masivnih delcev.

    Proizvodnja parov vseh vrst se je končala v približno 1 s, ko je temperatura padla na 6 x 10 9 K.

    Nastajanje parov je obratno izničenju parov, ki se zgodi v jedru Sonca, kjer elektroni in pozitroni trčijo in tvorijo fotone. Ko je nastajalo vedno več delcev, se je povečevalo tudi uničevanje parov.

    Ko določene vrste delcev ni bilo več mogoče ustvariti, je hitro izginil, ker lahko vedno pride do izničenja parov, neodvisno od temperature.

  • Zaradi prekinitve simetrije v procesu proizvodnje parov je nastalo nekoliko več snovi kot antimaterije, morda en delček na milijardo. Ko je bila vsa antimaterija uničena, je ostala le majhna količina snovi, to je masa, ki jo vidimo danes.

36.5 Nastanek jeder

  • Spomnimo se, da je elementarna številčnost zvezd približno 74% H, 25% He, 1% drugih.

    Znano je, da 1% drugega nastaja znotraj zvezd samih, toda le 10% helija je mogoče razumeti kot proizvedenega znotraj zvezd.

    Od kod prihaja preostanek He?

    Veliki pok bi to lahko razložil, vendar bi bil takoj zatem tako vroče, da bi se povsod v vesolju pojavila velika količina fuzije H.

    Po približno 300.000 y se je temperatura v vesolju zmanjšala na približno 3000 K, kar ustreza najvišji valovni dolžini v bližnjem infrardečem območju. Pred tem časom je bilo vesolje zelo podobno notranjosti zvezde: vsa snov je obstajala kot plazma nabitih delcev, ker je bilo vroče, da bi obstajali nevtralni atomi, in vesolje je bilo neprozorno, ker fotoni niso mogli zelo potovati daleč preden so bili raztreseni.

  • Po tem času pa se je snov v veliki meri pretvorila v nevtralne atome. To ločevanje se je zgodilo v nekaj sekundah, fotoni pa so omogočili relativno svobodno potovanje skozi vesolje.
Ozadje zvezdne karte je bilo izdelano na Macintosh-u s programom Voyager II in so & copy1988-93 Carina Software, 830 Williams St., San Leandro, CA 94577, (510) 352-7328. Uporablja se pod licenco. & copy1996-1999 Scott R. Anderson
Zadnja posodobitev: 1999 6. december
Vprašanja, komentarje, predloge ali popravke pošljite na [email protected]
Gradivo na tej spletni strani se lahko ponovno uporabi, kot je opisano v licenci za odprti tečaj.

Vrata do izobraževalnih gradiv (GEM) so ključ do enkratnega in nenehnega dostopa do tisoč visokokakovostnih učnih načrtov, učnih enot in drugih izobraževalnih virov na internetu! GEM je projekt ameriškega ministrstva za šolstvo. Spletna knjiga Uvod v astronomijo je katalogizirana v Gatewayu, Scott R. Anderson pa je član konzorcija GEM.


Ali lahko vidimo singularnost, najbolj skrajni objekt v vesolju?

Skupina znanstvenikov na Tata Institute of Fundamental Research (TIFR) v Mumbaju v Indiji je našla nove načine za odkrivanje gole ali gole singularnosti, najbolj skrajnega predmeta v vesolju.

Ko se porabi gorivo zelo masivne zvezde, se zaradi lastnega gravitacijskega vleka sesuje in sčasoma postane zelo majhno območje poljubno visoke gostote snovi, to je "edinstvenost", kjer se običajni zakoni fizike lahko porušijo. Če je ta singularnost skrita znotraj obzorja dogodkov, ki je nevidna zaprta površina, iz katere ne more uiti nič, niti svetloba, potem temu predmetu rečemo črna luknja. V takem primeru ne moremo videti singularnosti in se nam ni treba truditi glede njenih učinkov. Kaj pa, če se obzorje dogodkov ne oblikuje? Pravzaprav Einsteinova teorija splošne relativnosti napoveduje takšno možnost, ko se masivne zvezde sesujejo na koncu svojega življenjskega cikla. V tem primeru nam preostane moteča možnost opazovanja gole singularnosti.

Potem je pomembno vprašanje, kako opazovalno razlikovati golo singularnost od črne luknje. Einsteinova teorija napoveduje zanimiv učinek: tkanina vesolja in časa v bližini katerega koli vrtljivega predmeta se zaradi tega vrtenja "zvije". Ta učinek povzroči vrtenje žiroskopa in orbito delcev okoli teh astrofizičnih predmetov. Skupina TIFR je pred kratkim trdila, da bi lahko hitrost, s katero se žiroskop precesira (frekvenca precesije), postavljen okoli vrtljive črne luknje ali gole singularnosti, uporabila za identifikacijo tega vrtljivega predmeta. Tukaj je preprost način za opis njihovih rezultatov. Če astronavt zabeleži frekvenco precesiranja žiroskopa na dveh fiksnih točkah blizu vrtečega se predmeta, lahko vidimo dve možnosti: (1) frekvenca precezije žiroskopa se spremeni za poljubno veliko, to pomeni, da se vedenje žiroskopa in (2) frekvenca precesije se spremenita za majhno količino, na pravilen in lep način. V primeru (1) je vrtljivi predmet črna luknja, v primeru (2) pa je gola singularnost.

Ekipa TIFR, in sicer dr. Chandrachur Chakraborty, g. Prashant Kocherlakota, prof. Sudip Bhattacharyya in prof. Pankaj Joshi, v sodelovanju s poljsko ekipo, ki jo sestavljata dr. Mandar Patil in prof. Andrzej Krolak, je dejansko pokazala, da je pogostost precesije žiroskopa, ki kroži okoli črne luknje ali gole singularnosti, je občutljiv na prisotnost obzorja dogodkov. Žiroskop, ki kroži in se iz katere koli smeri približuje horizontu dogodkov črne luknje, se obnaša vse bolj "divje", to pomeni, da se vse hitreje predešira, brez vezave. Toda v primeru gole singularnosti postaja frekvenca precesije poljubno velika le v ekvatorialni ravnini, vendar je pravilna v vseh drugih ravninah.

Skupina TIFR je tudi ugotovila, da je za razlikovanje teh eksotičnih predmetov mogoče uporabiti precesijo orbit snovi, ki padejo v vrtljivo črno luknjo ali golo singularnost. To je zato, ker se frekvenca precesije orbitalne ravnine povečuje, ko se snov približuje vrteči se črni luknji, vendar se ta frekvenca lahko zmanjša in celo postane nič za vrtečo se golo singularnost. This finding could be used to distinguish a naked singularity from a black hole in reality, because the precession frequencies could be measured in X-ray wavelengths, as the infalling matter radiates X-rays.


Agreed terms help sensible discussion: Universe

May I please kick off with the word Universe. I will plead my case, but please chip in if you want a plurality of universes, or alternate realities.

First I would like to quote some dictionaries and books on cosmology.

Oxford Dictionary of Astronomy Ian Ridpath OUP 2011.
"Universe Everything that exists, including space, time and matter. The study of the Universe is known as cosmology. Cosmologists distinguish between the Universe, with a capital U, meaning the cosmos and all its contents, and universe with a small u, which is usually a mathematical model derived from some physical theory. The real Universe consists mostly of apparently empty space, with matter concentrated into galaxies consisting of stars and gas. The Universe is expanding, so the space between galaxies is gradually stretching, causing a cosmological red shift in the light from distant objects. There is now strong evidence that space is filled with unseen dark matter that may have many times the mass of the visible galaxies and even more mass may be accounted for by a still-mysterious dark energy. The most favoured concept of the origin of the Universe is the "Big Bang Theory [BBT], according to which the Universe came into being in a hot, dense fireball 13.7 billion years ago."

The Icon Critical Dictionary of The New Cosmology Ed Peter Coles Icon Books 1998.
Universe The entirety of all that exists. The Greek word cosmos, the root of cosmology, means the same cosmology is the study of the Universe. This definition seems relatively straightforward, but there are some confusing subtleties, and linguistic confusion. For example, what do we mean by exist?
There are over two ages elaborating. I would summarise, that there is the view of science that only that which can be observed qualifies as Universe. "For some scientists what really exists is the laws of physics our Universe is merely a consequence, or an outcome of these laws. . . . . . . . . . But do these laws exist, or did we invent them? Is mathematics an intrinsic property of the world, or is it simply a human invention that helps us to describe that world, in much the same way as a language? . . . . . . . . . Če je Universe is the entirety of all that exists, then our model universe cannot be embedded in anything. What is outside the Universe must be something that does not exist. It does not therefore make any sense to think of there being anything outside the Universe.& quot

Universe: The Definitive Visual Guide Ed. Martin Rees DK 2012
"The Universe is all of existence - all of space and time and all the matter and energy within it. . . . . . . . . . The Universe encompasses everything from the smallest atom to the largest galaxy cluster, and yet it seems that all are governed by the same basic laws.

Opomba: In the more specialised texts on cosmology, it is perhaps understandably more difficult to find definitions of Universe. It is taken for granted, unless stated to the contrary, that the accepted definitions, such as the above, apply. Any mentions of "other universes" will be documented.

Bang! The Complete History of the Universe. Brian May Patrick Moore Chris Lintott
Carlton Books 2006.
"Everything, space, time and matter, came into existence with a 'Big Bang' around 13.7 billion years
ago. The Universe then was a strange place - as alien as it could possibly be. . . . . . . . . . how big is the Universe? Either the Universe is of finite size or it isn't. If finite, what lies outside it? The question is meaningless - space itself exists only within the Universe, and literally there is therefore no 'outside'. On the other hand, to say the Universe is infinite is really to say that its size is not definable.

Cosmology A Very Short Introduction Peter Coles OUP 2001
"The word cosmology itself is derived from the Greek cosmos meaning the world as an ordered system or whole. The emphasis is just as much on order as on wholeness, for in Greek the opposite of cosmos is chaos. . . . . . . . . . The advent of mathematical reasoning, and the idea that one can learn about the physical world using logic and reason marked the beginning of the scientific era."
"In the modern era of cosmology . . . . . . began with a complete rewrite of the laws of Nature. (Einstein) demolished Newton's conception of space and time . . . . . . great works by Friedman, Lemaitre, and de Sitter formulated a new and complex language for the mathematical description of the Universe." Einstein's theory plays a fundamental conceptual role in modern cosmology. Hubble's observation of galaxies led to the observation that the Universe is expanding, and Penzias and Wilson discovered the cosmic microwave background (CMB) considered by many as proof that the Universe began with the Big Bang. Whilst accepted by most cosmologists "as being essentially correct, as far as it goes . . . . . . it is important to realise that the Big Bang is not complete. "For one thing, Einstein's theory itself breaks down at the very beginning of the Universe. The Big Bang is an example of what relativity theorists call a singularity, a point where the mathematics fall to pieces and measurable quantities become infinite. While we know how the Universe is expected to evolve from a given stage, the singularity makes it impossible to know from first principles what the Universe should look like in the beginning. . . . . . . . . . Most cosmologists interpret the Big Bang singularity in much the same way as the Black Hole singularity . . . i.e., as meaning that Einstein's equations break down at some point in the early Universe due to the extreme physical conditions present there. . . . . . . . . . This shortcoming is the reason why the word 'model' is probably more appropriate than 'theory' for the Big Bang."

The Theory of (nearly) Everything Ed Daniel Bennett BBC ScienceFocus.com 2016
A lengthy section entitled The Story of the Universe.by Stuart Clark and Elizabeth Pearson.
Chapter headings are:
1. The Big Bang
2. Inflation 19-35 seconds post-Big Bang
3. Particle Creation 1 minute post-Big Bang
4. The Decoupling of Matter and Energy 380,000 years post-Big Bang
5. The Cosmic Dark Ages 1 million years post-Big Bang
6. The Formation of the Solar System 8.8 billion years post-Big Bang.
As such reference is made to the Big Bang, that Section of Agreed Terms is suggested.

Astronomija Special Issue The Beginning and End of the Universe January 2021
Relevant contents:
THE BEGINNINGS
It began with a Bang by Dan Hooper
Inflating the universe by Brian Keating
The Emergence of Matter by Christopher Conselice
The Cosmic Dark Ages by Dana Najjar
The First Stars are Born by Michael E Bakich
also:
LIVING IN THE UNIVERSE
THIS IS THE END.

Astronomija zdaj Universe's expansion rate still doesn't match up News May 2021
"The controversy over the value of the Hubble constant, which describes the rate of expansion of the Universe, has deepened, thanks to a new method of measuring distances across the cosmos."

Astronomija zdaj Billions of dwarf galaxies caught in the cosmic web News May 2021
"The light of billions of previously unknown dwarf galaxies has been found illuminating the cosmic web of matter during the first two billion years of the Universe."

Astronomija zdaj A lens on theUniverse by Keith Cooper June 2021
"Space is sculpted by gravity, and gravity is able to distort the path of light and magnify it like an optical lens. These gravitational lenses are our window onto some of the Universe's greatest mysteries."


Singularity

A singularity is a region of space where the curvature of spacetime becomes infinite. Due to the cosmic censorship conjecture, most singularities are hidden behind event horizons.

Singularity
A quantum singularity
For the ENT episode of the same name, please see "Singularity".

Singularity Alert Service - Text by John B
A service often available in more-civilized areas. These services maintain sensor and informant networks geared towards the detection of new singularities, and new interests of high-S factor sentiences.

at the core of a black hole may shrink to a size smaller than an atom, and eventually become an infinitely small point in space containing infinite mass.

and discontinuity of longitude[edit]
Note that the longitude is singular at the Poles and calculations that are sufficiently accurate for other positions, may be inaccurate at or near the Poles. Also the discontinuity at the ±180 meridian must be handled with care in calculations.

is a point in space-time at which the density of matter and the gravitational field are infinite (forming a black hole). Singularities are points at which the mathematical solution to the space-time equations are undefined.

Solar cycle- the approximately 11-year quasi-periodic variation in frequency or number of solar active events .

The object of zero radius into which the matter of a black hole is believed to fall.
Sinuous Rille .

in a black hole but recent studies and the observations indicate that even black hole formation is speculative.

- An area wherein space and time are infinitely distorted.
Small Magellanic Cloud - An irregular and small galaxy orbiting the Milky Way galaxy.
Solar eclipse - When the moon passes between the earth and the sun.

is hidden within a black hole
(Source: Northern Arizona University: Meteorite/Book-GlossaryS.html) .

A point in space, such as at the centre of a black hole, where the density of matter is theoretically infinite according to the current laws of physics.
SOLAR APEX .

. A point at which space and time are infinitely distorted, such as the central point of a black hole where matter is concentrated into an area of zero volume and infinite density. The centre of a black hole, where the curvature of spacetime is at its maximum.

at t=0 is an infinite energy density state, so general relativity predicts its own breakdown.
The timescale problem
Are independent measurements of the age of the Universe consistent using Hubble's constant and stellar lifetimes?

that will be visible and communicable to the outside world. [H76]
nano- .

-free recasting of the Newtonian potential in continuous media A45
J.-M. Hur
DOI:.

theory is the study of the failure of manifold structure. A loop of string can serve as an example of a one-dimensional manifold, if one neglects its width.
). Finally, root systems are important for their own sake, as in graph theory
Graph theory .

A point in the universe where the density of matter and the gravitational field are infinite, such as the center of a black hole.
(SIRTF) Space Infrared Telescope Facility NASA's Great Observatory for infrared astronomy, later renamed Spitzer, in honor of Lyman Spitzer, Jr.

is present in a black hole.
Sol - (n.) .

University hosts its leadership and educational program at the facility.

, a place where the curvature of space-time becomes infinite and gravitational forces become infinitely strong.

24.5 Black Holes
Sirius2.1 The Sky Above, 4.3 Keeping Time, 17.1 The Brightness of Stars, 17.1 The Brightness of Stars, 17.1 The Brightness of Stars, 17.3 The Spectra of Stars (and Brown Dwarfs), 17.4 Using Spectra to Measure Stellar Radius, Composition, and Motion, 17.

Point in space or spacetime at which the current laws of physics make non-real predictions for the values of some quantities. Thus at the centre of a black hole, the density, the force of gravity and the curvature of spacetime are all predicted to be infinite.

is a point or place of infinite density. It can either be located at the centre of a non-spinning black hole as a point of infinite density or around the centre of a spinning black hole as an infinitely thin ring.

is the black hole's inner region and this is where its mass exists. This is a location that is the single point in space-time with the mass concentration of the black hole.

is an infinitely tiny point in its innermost region. The boundary surrounding a black hole, known as the event horizon, varies in size.
Maša
Black holes vary in mass. They can range from 10 times to several billion times the mass of our Sun.

that is not surrounded by an event horizon.
NEBULA: A cloud of dust and gas in space, from which new stars are created.
NEUTRINO: Miniscule particle with little or no mass and no charge that travels at the speed of light.

This point is referred to as a

is a spherical region at which the escape velocity is exactly equal to the speed of light.

the effects of Einstein's general theory of relativity become paramount. According to this theory, space becomes curved in the vicinity of matter the greater the concentration of matter, the greater the curvature.

No known force can prevent the material from collapsing all the way to a pointlike

, a region of extremely high density where the known laws of physics break down.

the initial condition in the big bang theory in which the entire universe (including space, time and mass) is contained in an infinitesimal volume. terminator the dividing line between the light and dark part of a planetary body.

from before the big bang comparable to a black hole?

This means that the mass has to be crushed down to an infinitely small point - a

, which has no size but does have a measurable mass.

The Big Bang theory postulates that the universe came into existence from a small "

" in a single instant some 12 to 14 billion years ago. Early on it was hot and dense.

The crushing weight of constituent matter falling in from all sides compresses the dying star to a point of zero volume and infinite density called the

. Details of the structure of a black hole are calculated from Albert Einstein's general theory of relativity.

The space-time diagram at right shows matter in blue collapsing to form a

[the solid black line], while the green curves are the future lightcones from events where light can escape to infinity, while the red curves are future lightcones from events where light cannot escape.

The black hole's mass is concentrated in a point of almost infinite density called a

increases, its gravitational influence lessens.

In these models the Big Bang is a

, a region characterized by infinite density, temperature, and curvature.

might not exist. That's because all known physics breaks down under the extreme conditions at the center of a black hole, where quantum effects doubtless play a large part.

A black hole consists therefore of an infinitely dense

at R=0 surrounded by the Schwarzschild radius from which no light can escape. This radius is known as the Event Horizon. It is the horizon beyond which you cannot see any events (an event being an occurrence at some point in time and space).

Everything that falls into it goes straight into the

. The surface that surrounds the black hole is called an event horizon. Imagine if you were to fall into a black hole . as you cross the event horizon you will notice nothing, but once you cross it there is no way back.

At t = 0, the universe was a

with infinite matter/energy density and zero volume. Then the Big Bang occurred.
Cosmology, Universe .

75 billion years ago, all of the contents and energy in the universe was contained in a

with infinite density and temperature. It began to expand rapidly and this expansion is known as the Big Bang.

★ Big Bang Theory One theory to describe the creation of the universe as we know it from a

where the laws of Physics break down. It is estimated 13.8 billion years ago. See nice diagram under Cosmology.

The collapsed core of a massive star. Stars that are very massive will collapse under their own gravity when their fuel is exhausted. The collapse continues until all matter is crushed out of existence into what is known as a

. The gravitational pull is so strong that not even light can escape.
Blueshift .

Small stars may become white dwarfs or neutron stars but stars with high masses become black holes after a supernova explosion. Since the remnant has no outward pressure to oppose the force of gravity, it will continue to collapse into a gravitational

and eventually become a black hole.

Its popularity is due to its hot- star status, its luminosity, the clarity of its spectrum caused by slow rotation, and its

. Unlike many stars of its kind, Tau seems distinctly single, with no evidence at all of any companion.

Sometimes though a star is so massive that the mass of the material left after all other mass-loss processes exceeds the limit that even neutron degeneracy pressure can withstand. At this stage then the material keeps collapsing inwards until all the mass becomes concentrated at a single point, a


Michael Guillen: The big black hole in our understanding of the universe

Former NASA astronaut Mike Massimino explains what can be learned from the groundbreaking discovery.

This week’s alleged image of a black hole purportedly at the center of the M87 galaxy is understandably being hailed as evidence for one of the most astonishing and controversial phenomena predicted by Einstein’s century-old theory of gravity.

But if it is indeed what its authors claim, then the donut-shaped portrait also reveals how very little about the cosmos we truly understand and perhaps ever will.

Many years ago, while studying for my doctorate at Cornell, I was struck by how fundamentally different astronomy is from other sciences. In physics, chemistry, geology, biology – you name it – we can usually lay our hands on the objects of our curiosity and bring them into our labs for controlled, close-up scrutiny.

With the exception of some moon rocks and telemetry from spacecraft exploring our immediate neighborhood, the objects studied by astronomers are typically unreachable and can be understood solely by analyzing the light they emit and absorb. As the English physicist and Nobel laureate Sir William Bragg once observed, “Light brings us the news of the Universe.”

The image published this week is theorized to be that of a black hole more than 300 quintillion miles away – far, far beyond our reach. Moreover, the image is not a photograph, but a simulated, false-color visual representation of data collected from eight worldwide radio telescopes – telescopes that detect radio waves, not visible light – and engineered by a convoluted computer algorithm.

Above all, the image does not reveal an actual black hole, but the electromagnetic chaos astronomers imagine to be swirling around one. The M87 black hole, if it exists, appears as a — well, black spot. As in black box. As in obscure mystery.

In Einstein’s famous theory of general relativity, you see, black holes arise as singularities, the mathematical term for pinpoint-like infinities. That’s why black holes are believed to exist wherever there is so much matter it collapses down to a mathematical point under its own weight, creating an infinitely strong gravitational force. A force so powerful not even light can resist its pull.

Also according to the theory, we can never actually observe a singularity – a naked singularity, as we call it – because it’s inevitably clothed in a bubble-of-no-return, the outer shell of which is called the event horizon. If you were ever lucky (and unfortunate) enough to enter such a bubble-of-no-return, Einstein’s theory predicts you’d see the future flash before your eyes just before being stretched to death.

If that seems like a rational, if scary, explanation of black holes, it isn’t, really. A singularity is an intriguing concept, and a scientifically fruitful one, but imagining it – something with no dimension that is infinitely large – is as impossible as imagining God.

And this week’s sensational image is certainly of no help. To the contrary, the perfectly shaped, perfectly sized, perfectly black donut hole merely rubs the mystery in our faces.

Black holes, as it happens, aren’t the only opaque mysteries punching holes in astronomy’s worldview of the cosmos. I’ll mention just two others here.

The first one was called the missing mass problem when I was a young scientist. Today it’s known as the dark matter problem, referring to a mysterious kind of matter that does not give off any light. That’s a major bummer for a scientific discipline that relies on light from the heavens to know what it’s talking about.

The second one is known as the dark energy problem, a shocking discovery made in 1998 that I covered for ABC News. Dark energy is our name for an invisible substance we believe is causing the universe to accelerate outward, and about which we know virtually nothing. “If you’re puzzled by what dark energy is,” remarks astrophysicist Saul Perlmutter, who won the 2011 Nobel Prize in physics for co-discovering the cosmic acceleration, “you’re in good company.”

Between black holes, dark matter, and dark energy, we now estimate that upwards of ninety-five percent of the universe is completely hidden from us – and might always be. If true, it means the entire discipline of astronomy – including Einstein’s vaunted theory – is based on an awareness of less than 5 percent of creation. In other words, as in this week’s stunning image, there is an enormous black hole in our understanding of what’s truly out there.

That’s today’s real headline. And cause for great wonder and astronomical humility.


What the Universe Tells Me about God

For some time now, astrophysicists and nuclear physicists have sought the truth about the beginning of the universe and what caused it. The results of their research so far has taken them to within one one-hundredth of a second from the beginning of time, space, matter and energy. Earth-based and space-probe scientific explorations of twentieth and early twenty-first centuries have discovered evidence to support a theory about the origin of the universe and its history from that point to the present time. Even now, scientists using the Large Hadron Collider at the European Centre for Nuclear Research under the French-Swiss border are striving to discover the Higgs Boson, supposed by some to endow other fundamental particles in the universe with mass, so essential to explaining the nature of gravity. The Hadron Collider is designed to smash the tiny particles of matter together at incredible speeds so that scientists can observe the extreme black energies, micro-black holes and other phenomena that supposedly occurred during the first millionths of a second after the big bang — a quantum leap beyond the current limit of a hundredth of a second.

Scientific discoveries between 1920 and the present have shown beyond a reasonable doubt that the universe had a finite beginning, before which there was no space, no time, no matter, no energy. The widely accepted Big Bang theory states that the universe appeared out of nowhere about fifteen billion years ago as a singularity. Singularities are invisible zones of incalculable heat and density now thought by scientists to exist at the core of black holes (invisible areas of extreme gravitational pressure in the known universe). All matter and energy now in the universe was concentrated at incalculably high temperatures and gravitational compression within this primordial singularity, the infinitesimal size of a mathematical point, which appeared suddenly and began to expand and cool. Scientists haven’t been able to explain exactly how, when or why it appeared but they’re sure that building blocks of everything in the known universe, including the stuff of our bodies, were in that singularity.

According to British astrophysicists Stephen Hawking, George Ellis and Roger Penrose, with the appearance of that first singularity, time and space had a finite beginning corresponding with the origin of matter and energy. The singularity didn’t appear in time and space time and space began with the appearance of the singularity.
While the facts that contemporary scientists have discovered confirm their theory from about one one-hundredth of a second ATB (After the Bang) to the present, no current physical model can identify the precise instant at which this first singularity came into existence. The reason for this is that, as the scientific quest continues to push back in infinitesimal fractions of time from the one one-hundredth-of-a-second mark to the actual instant of the big bang, the increasingly smaller, hotter and denser matter and energies of the newborn cosmos require the far more accurate microcosmic measurements of quantum mechanics and superstring theory.

The current Large Hadron Collider experiments below the French-Swiss border (or the Tevatron experiments at the Fermi National Accelerator Laboratory in Batavia, Illinois) may well explain what happened in those first millionths of a second after the Big Bang. Perhaps they or other experiments may even discover evidence of the exact Big-Bang instant when our universe appeared out of nowhere, or will confirm what superstring cosmologists assert about an epoch of microcosmic activity in the infinite pre-Big Bang void before the cosmic birth.

At that point will scientists then be able to claim that the laws of physics alone caused the universe to spontaneously come into being, and, so, there is no God? Quite the contrary, everything that scientists have discovered so far about the birth and development of all physical creation points to the ingenious, meticulous plan of a supremely infinite Intellect that confounds and amazes the most brilliant human minds on Earth. In an effort to explain the origin of the universe from a purely materialistic viewpoint, some scientists tell us that nothing existed before the Big Bang others tell us that, long before the Big Bang, vacuum fluctuations and virtual particles existed in the indeterminable void while still others theorize that the universe began as a perfect vacuum and all the particles of the material world were created from the expansion of space (which itself is a finite and, so, a caused thing). Still, the scientists might deny the theory of an uncaused cause, based on the impossibility of a cause pre-existing itself. The answer to that proves the whole point that God did not pre-exist Self it is in God’s very nature to exist in or through Himself (per se), without a prior cause. God always existed, exists now, and will exist infinitely and eternally.
This, of course, is where physical scientists and philosophers and theologians part ways. The scientific method requires that the scientist ask a question about something observed do background research on the phenomenon construct a hypothesis about it test the hypothesis through experimentation (changing only one factor at a time until they discover the truth of it) analyze the results and draw a conclusion. When — and only when — the results prove true, they report their findings to their peers.

Philosophy and theology, the metaphysical sciences, seek answers to questions beyond the realm of physical evidence. The philosopher often begins with a sense of wonder which may create suspicion or doubt about some accepted belief, which, in turn, impels questioning of that belief. The philosophical subject matter is metaphysical in nature, beyond the physical information collected by the senses. Many of the “isms” in the world are the result of philosophical thinking. The philosopher wonders about something, formulates questions and/or problems about it, enunciates and justifies a solution to it, and engages in a philosophical dialectic about it with other philosophers.

Theologians, like philosophers, are drawn into their search for truth by a sense of wonder. Theological subject matter, too, is metaphysical (in this case, supernatural) in nature. The difference is that theological truth, based on divine revelation, requires a giant leap of supernatural faith on the part of a truth-seeker, based on the authority of the revealer.
All three — physical scientists, philosophers and theologians — are scientists. The physical scientists are limited to what can be discovered through physical evidence alone the philosophers are limited to what can be discovered through human reasoning alone and the theologians are open to all three methods used by the invisible God to reveal Himself to His creatures because, even though some aspects of the self-existent, invisible God can be discovered by human reasoning through the physical evidence of the effects of God’s creation, much about God would remain unknown if it had not been revealed to us by God Himself in His Divine Word and Son, incarnate in Jesus of Nazareth, the Christ.
Much of what the physical scientists discover and prove is valuable and very helpful to our understanding of God’s creation. However, we must realize that they, like forensic detectives, are limited by their absolute dependence on the rules of physical evidence. Nonetheless, by the fruits of their efforts, God often reveals to us the truth of His existence in the effects of His handiwork.

However, the truths obtained through the efforts of human reasoning, coupled with the great leap of faith in the supernatural revelations of God to humanity through the Old Testament prophets and, above all, through the teachings of Jesus the Christ, the Word and Son of God, take our human intellects far beyond the boundaries of physical evidence to an enlightenment given to us by God Himself, illuminating far more clearly our way to His eternal kingdom, the end for which we were created.

What does that tell us about God, the Creator of the universe? Everything about God is the complete reversal of what we experience in our world. Our universe, though immense (15 billion times 5.87 trillion miles), is limited. Everything here on Earth is limited. We are accustomed to things that had a beginning and, someday, will come to an end. God, on the other hand, had no beginning and cannot have an ending. He is the Self-Existent, pure infinite existence Itself.

It is this revelation, in the visible effects of the nature and perfection of this infinite, unseen God, the Self-existent Being, Who created all that is, visible and invisible, that inspires me to be thrilled by His absolute power and love, and to reflect upon it in the posts of this blog.